ltbs.net
当前位置:首页 >> 无限不循环小数 >>

无限不循环小数

无限不循环小数有三类: 1、常用的常数,如π、e…… 2、开不尽方的数,如:√2,4的8次方根, 3、构造数;如; 0.101001000100001……,

在不同的情况下,一个分数可以化成有限小数或者无限循环小数(包括纯循环小数和混循环小数),但是不能化成无限不循环小数。 用分子除以分母,其余数必定小于分母,每次的余数只能是从1到6之间的一个自然数(如果余数是0,这个分数就能化成有限...

你说的这是两实数相除的情况,它可能除得尽也可能除不尽!能除尽的是有限小数;除不尽的有两种可能,一种是无限延续不会重复,也就是无限不循环小数,一种是到一定位数就一直重复某几位,也就无限循环小数。 举个例子: 1、1/2=0.25(有限小数) ...

无限循环小数就是没有尽头的一直循环的,比如说6.66666666666……就是小数点后面的数都一样的,无限不循环小数就是最简单的数学中的派,就是3.1415926……后面都是不一样的数,但是还没有尽头的循环的,有限小数比如说:3.52 5.2等等,后面不循环的...

无限不循环的小数肯定不是分数, 分数都是可以化为无限循环的小数,(你可以随便除除看比如1/3,7/9。。。) 反之,无线循环小数也都肯定是个分数; 可以这么说, 除不尽的分数=无线循环小数 无限不循环小数也就肯定不是分数。

既然是无限不循环,就一定不能用两个整数相除p/q的方式得到,这样的数应该有无数个。 举例: 0.12112211122211112222......,只用数字1和2,但12各一位、各两位、各三位....如此不断,仅此一种简单模式就可以生成无穷多个,其它不一一列举。 供...

无限不循环小数指小数点后有无数位,但没有周期性的重复,或者说没有规律的小数。所以数学上又称无限不循环小数为无理数。常见的有圆周率π 和开方开不尽的,根号2,根号5等

循环节从小数点后就开始的小数为纯循环小数 循环节从小数点后若干位才开始的小数为混循环小数 是无限小数且没有循环节的小数为无限不循环小数

无限不循环小数是常数。 常数是指固定不变的数值。如圆的周长和直径的比π﹑铁的膨胀系数为0.000012等。常数是具有一定含义的名称,用于代替数字或字符串,其值从不改变。数学上常用大写的"C"来表示某一个常数。

有限小数和无限循环小数是有理数,无限不循环小数又叫无理数.

网站首页 | 网站地图
All rights reserved Powered by www.ltbs.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com